Sunrise 今日の日の出(2024.12.19)TimeLaps😊

It’s not completely clear, but the weather is nice. There was no frost, and it was a
slightly warm dawn.
As expected of December, the schedule is packed, and it seems it will stay this way
until the end of the year.
 
快晴ではありませんが良い天気です、霜も降りず、やや暖かい夜明けになりました。
やはり師走、予定が目白押しで、ここまま年末になりそうです。
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph
#DaVinciResolveStudio19
#Timelapse
#sunrise_ichinomiya
#Sunset_ichinomiya
#日の出_一宮
#夜明け_一宮
#GoproHero9
#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

PoEの安全性その1

PoEがなぜ安全であるかを説明する、PoEで使用するLANケーブルもプラグもPoE専用ではな
く非PoEと同一である。このため、PoE給電装置に接続されたケーブルタグなどで識別され
ていなければ識別が難しい、PoEの給電電圧はDC50V前後、通常の電子機器にそのまま印加
されると破損の恐れがある、このため標準化されたPoEは、この防止手段が標準で装備され
ているが、この仕組みを理解している方は意外に少ない。
 
この仕組み、詳細に述べると長くなるが、要約すると給電装置は接続された受電側がPoEか
否かを識別できる仕組みがあり、この手順を経て送電を開始することで誤送電を防止してい
る。
 
この仕組みの信頼性は高く、過去に誤送電での破損トラブルは耳にしたことはない。
当然のように思われるが、世界中の多数の製造メーカーが足並みを揃えていることの証明で
ある。PoEには様々な取り決めがあるが、こと電力伝送では、この取り決めは極めて重要で
ある、これによって使用しようとするLANケーブルが、PoE給電されているか否かを確認せ
ず接続が出来る。
 
PoEの給電に関しての仕組みは、想像されているようも複雑な手順を踏んで、給電を開始
している、給電側は接続されて機器が非PoEであれば当然給電は行わず、信号のみの伝送
を行う。PoEであれば、そのクラス(IEEE802.3af/at/bt)を判別し、その規格に見合った
電力供給を行う準備をし、希望された電力を、接続先の規格の上限まで供給する。
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

Sunrise 今日の日の出(2024.12.17)TimeLaps😊

This weekend marks the winter solstice, and the sunrise time will be close to 7:00 AM,
remaining around this time until mid-January.

The sunrise position will be almost at the location of the winter solstice. After the
solstice, it will slowly begin to move northward, and by then, it will be New Year's Day,
a time when the cold intensifies.
 
 
今週末は冬至になります、日の出時刻は7時に近くなり、来月中旬までこの時刻となります。
日の出位置はほぼ冬至の場所となり、冬至のあとゆっくりと北上を開始しますが、その頃
元旦となり、寒さが増してくる頃です。
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph
#YouTube
#DaVinciResolveStudio19
#Timelapse
#sunrise_ichinomiya
#Sunset_ichinomiya
#日の出_一宮
#夜明け_一宮
#GoproHero9
#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

岡山に向かいます

岡山に向かいます
年末なのか新幹線は少し混み合っています。
 
 
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph
#YouTube

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

三河一色さかな村

三河一色さかな村
愛知県西尾市にある直販市場です、全国から魚が集まっています、地の魚だけでは
ありません。
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

柿園の伐採

柿園の伐採
長年お世話になった柿園ですが、間引いて木を減らすことになりました・・・
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

明日は今年最後の岡山出張

明日は早朝から岡山に出張です。
05:55 バス
06:30 JRで名古屋に
07:06 新幹線で岡山に
08:41 岡山到着
09:10 会議・打ち合わせ
13:00 工業試験場で打ち合わせ
16:00 LAN延長工事の打ち合わせ
19:00 岡山駅から新幹線
22:00 一宮
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

各務原遺産の森トレッキング(2024.12.15)

各務原遺産の森トレッキング(2...
所用やら悪天候で、またまた1ヶ月近く間が空いてしまいました・・・
久々のトレッキングです、すっかり木々の葉は落ちて、冬模様です。
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph
#Pixcel8a
#トレッキング
#trekking

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

光ファイバー挿入損失法における数値について

光ファイバーの性能試験において、挿入損失法での評価に用いられるのは「dB」であり、
機器が表示する受信レベル(dBm)の絶対値は必ずしも重要ではありません。
 
挿入損失法は、基準となるケーブルを用いて、基準と被測定ケーブルとの損失差を評価する
手法です。そのため、表示されるdBmの絶対値そのものではなく、**基準との差異(挿入損
失)**が評価の対象となります。
 
測定機器は、光源(Light Source)と受光部(Power Meter)から構成されており、どちら
も電池駆動のため、電源の安定性や起動後のエージング期間において出力および受信感度が
不安定な場合があります。さらに、コネクタの接合部分に起因する光損失も生じるため、
測定結果には**±1dB程度のバラツキ**が発生することがあります。
 
挿入損失の管理基準としては、損失が20dB以内であれば、実際の運用上大きな問題はない
と考えられます。そのため、測定値がこの範囲内であれば、±1dB程度のばらつきは無視し
ても差し支えないことが多いです。
 
なお、基準ケーブルの測定値については、-4dBmから-7dBmといった範囲でばらつきが見ら
れる場合がありますが、これは機器の発光出力や受信感度の変動が主な要因です。このた
め、機器の絶対的な出力レベルを校正することはあまり意味がありません。挿入損失の評価
では、相対的な損失差が重要であり、基準ケーブルの受信レベルが多少変動しても、その影
響は少ないからです。
 
実際の光ファイバーそのものの損失は極めて低いのが一般的です。挿入損失の多くは、融着
点やコネクタ接続部の不具合に起因します。そのため、接続部分のクリーニングや接続方法
の見直しが、測定精度の向上につながる場合が多いです。
 
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

AIで検証させた「光ファイバーの試験について」

原文
光ファイバーの性能試験には、挿入損失法とOTDR(Optical Time Domain Reflectometer)
がある。
伝送回路に両端に容易に立ち入り、作業員が試験時に配置できる、MMFのような環境では
挿入損失法が圧倒的に有利であり、測定方法の難易度も低い、ファイバーの接続部分が
少ないMMFではこの方法が有利で、測定機器も比較的安価で、測定の判断ミスも少ない。
 
OTDRは主に長距離(SMF)などで用いられる方法で、接続点の損失などが計測出来る優位性
があるが、データを読み取るなどのトレーニングが必須で、初心者には難易度が高い。
 
挿入損失法は基準ケーブルを用意し、その発光機と受光機、間での基準値を測定し、検体
の損失との比較で容易に挿入損失を算出が出来るため、初心者でもその測定原理を理解
すれば現場作業に投入出来る、ただしLC-SC変換アダプターのSMF/MMFの種類を間違え
ないことや、波長に関する知識は事前に徹底しておく必要がある。
 
光ファイバーは難易度が高いと思われがちだが、短距離用のMMFはメタルに比べて、
様々な利点があり、施工もパッチケーブルやFFCが普及しきたため、一気にハードルが
下がっている、前述のように試験方法を自社でマスターすれば施工に関しても自信が
持てるようになる。
 
以上の文章の内容を検証して
ChatGPT:

 
以下は、提示された文章の内容を検証した結果の要点と考察です。
1️⃣ 挿入損失法とOTDRの適用環境と特徴の記述
✅ 正しい点
 
    挿入損失法の有利性
        MMF(マルチモードファイバー)環境では、挿入損失法が有利である点は正しいです。
        理由: MMFは短距離伝送が多く、両端に物理的にアクセスしやすいため、作業員がテスト機器を簡単に設置できます。
        測定の容易さ
        挿入損失法はOTDRと比較して測定がシンプルであり、接続部が少ないMMFでは、誤差が少なく安定した測定が可能です。
        測定器の安価さ
        挿入損失法は光源(光発信器)とパワーメーター(受光器)を用いるため、OTDRに比べて測定機器のコストは低いです。
 
    OTDRの特徴
        SMF(シングルモードファイバー)で使用
        OTDRは主にSMFの長距離通信で利用されるのは正しいです。
        理由: 長距離伝送では、物理的に両端へアクセスするのが難しいため、片端からの計測が可能なOTDRが適しています。
        接続点の損失の測定
        OTDRは、光の反射や散乱を利用して、ファイバー接続の位置、損失、断線箇所などを可視化するツールです。
        これはOTDRの最も重要な機能の1つで、SMFの測定には不可欠です。
 
❌ 不正確または補足が必要な点
 
    「OTDRの初心者の難易度が高い」について
        確かにOTDRのデータ解釈には一定のトレーニングが必要ですが、近年のOTDR機器はユーザーフレンドリーなソフトウェアが導入され、直感的に操作できる製品も増えています。
※後述されている部分と矛盾する、OTDRは操作以前に習得・理解すべき光ファイバー伝送
に関しての様々な用語や構造に関する部分があり、このハードルが高い。
 
2️⃣ 挿入損失法の具体的な手順の説明
✅ 正しい点
 
    測定の手順
        基準ケーブル(リファレンスケーブル)を使用し、発光機(光源)と受光機(パワーメーター)の間の基準値を測定する方法は正しいです。
            まず、基準ケーブルの両端を光源と受光機に接続して、基準値(0dB)を設定します。
            次に、測定対象のファイバーを基準ケーブルと置き換えて損失を測定します。
 
❌ 不正確または補足が必要な点
 
    「LC-SC変換アダプターのSMF/MMFの種類の注意」について
        確かに、SMFとMMFでは心線径(コア径)が異なるため、LC-SCアダプターを使用する際に種類を間違えると、光の結合効率が大きく低下します。
        ただし、これが挿入損失法の直接的な測定誤差の原因になるのかは議論の余地があります。
            SMFとMMFの誤った接続は、損失値が異常に大きくなるため、通常の試験ではすぐに気づくはずです。
※実際の現場での数値が示されていない、通常の試験では判断出来ない場合があり、異常に
大きな損失値ではない、この指摘は不正確。
 
    波長の考慮
        「波長に関する知識は事前に徹底しておく必要がある」とありますが、これは挿入損失の測定において重要なポイントです。
            通信では通常、MMFは850nmや1300nmの波長、SMFは1310nmや1550nmを使用します。
            したがって、測定時に波長を誤ると、測定結果に大きな誤差が生じます。
 
3️⃣ 光ファイバー技術に関する考察
✅ 正しい点
 
    MMFの施工の容易さ
        短距離用のMMFは、メタルケーブルに比べて以下のような利点があります。
            電磁干渉(EMI)がないため、外部ノイズの影響を受けない。
            軽量・コンパクトなケーブル設計が可能。
            近年では**パッチケーブル(工場でコネクタが取り付けられたもの)やFFC(ファイバーフレキシブルケーブル)**が普及しており、現場での施工負担が軽減されています。
 
❌ 不正確または補足が必要な点
 
    MMFとメタルケーブルの利点比較
        短距離通信において、MMFがメタル(LANケーブル、特にCat.5eやCat.6)より有利だと記述されていますが、これには条件があります。
            MMFが有利な条件:
                距離が100mを超える場合(LANケーブルの距離制限は100m)。
                電磁干渉が多い環境(工場や発電所など)。
            メタルケーブルが有利な条件:
                100m以内の通信では、LANケーブル(UTPやSTP)の方がコスト面で有利です。
                イニシャルコストや工事費用の点では、LANケーブルが安価であり、工具も簡単です。
※MMFとメタルを距離のみで比較している、伝送量についての言及が無い、現状では
メタルでの10G伝送は実質的に無理がある。
 
    「自社で試験方法をマスターすれば施工に自信が持てる」について
        これは正しい考え方ですが、OTDRの習得はトレーニングが必要であるため、すべてを自社内で完結させるには、訓練コストと習得時間がかかります。
        一方で、挿入損失法の習得は比較的容易であるため、この方法を社内に導入するのは合理的です。
 
🔍 まとめ
項目    正確性    コメント
挿入損失法の説明    ✅正しい    手順、機器構成、利点の記述は正しい
OTDRの説明    ✅正しい    SMF、長距離測定の特徴は正しい
測定機器の違い    ✅正しい    OTDRの高コスト、挿入損失法の低コストも正しい
SMF/MMFの注意点    ⚠️補足が必要    LC-SCアダプターの説明を強化した方が良い
波長の考慮    ✅正しい    測定時の波長設定が重要であるのは事実
ファイバー vs メタル    ⚠️補足が必要    条件次第で有利/不利が変わるため補足が必要
施工性の向上    ✅正しい    パッチケーブルの普及で施工性が向上
🔧 改善提案
 
    OTDRの難易度
    → 初心者にもわかりやすい操作性のOTDR機器が増えていることを補足すると良いです。
 
    SMFとMMFの違いに関する補足
    → LC-SC変換アダプターの利用時に、心線径の違いだけでなく、光学的な結合損失の説明を追加すると、さらにわかりやすくなります。
 
    LANケーブルとの比較の明確化
    → 距離や導入コストに関する条件を具体的に提示すると、より説得力が高まります。
 
このような観点を取り入れると、文章の精度がさらに向上します。

 
 
※部分は筆者のコメント
 
わかお かずまさ
VegaSystems

📷📷📷📷📷📷
#LAN_PRO
#Bloguru
#VegaSystems
#Photograph

#LAN #LiveComp #Python #Timelapse #VBA #Video #kuma

ワオ!と言っているユーザー

×
  • ブログルメンバーの方は下記のページからログインをお願いいたします。
    ログイン
  • まだブログルのメンバーでない方は下記のページから登録をお願いいたします。
    新規ユーザー登録へ